Tree-Structure Bayesian Compressive Sensing for Video
نویسندگان
چکیده
A Bayesian compressive sensing framework is developed for video reconstruction based on the color coded aperture compressive temporal imaging (CACTI) system. By exploiting the three dimension (3D) tree structure of the wavelet and Discrete Cosine Transformation (DCT) coefficients, a Bayesian compressive sensing inversion algorithm is derived to reconstruct (up to 22) color video frames from a single monochromatic compressive measurement. Both simulated and real datasets are adopted to verify the performance of the proposed algorithm.
منابع مشابه
Bayesian compressive sensing for cluster structured sparse signals
In traditional framework of Compressive Sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. Other than sparse prior, structures on the sparse pattern of the signal have also been used as an additional prior, called modelbased compressive sensing, such as clustered structure and tree structure on wavelet coeff...
متن کاملCoded Hyperspectral Imaging and Blind Compressive Sensing
Blind compressive sensing (CS) is considered for reconstruction of hyperspectral data imaged by a coded aperture camera. The measurements are manifested as a superposition of the coded wavelengthdependent data, with the ambient three-dimensional hyperspectral datacube mapped to a two-dimensional measurement. The hyperspectral datacube is recovered using a Bayesian implementation of blind CS. Se...
متن کاملCompressive Sensing of Signals from a GMM with Sparse Precision Matrices
This paper is concerned with compressive sensing of signals drawn from a Gaussian mixture model (GMM) with sparse precision matrices. Previous work has shown: (i) a signal drawn from a given GMM can be perfectly reconstructed from r noise-free measurements if the (dominant) rank of each covariance matrix is less than r; (ii) a sparse Gaussian graphical model can be efficiently estimated from fu...
متن کاملCompressive Sensing for Cluster Structured Sparse Signals: Variational Bayes Approach
Compressive Sensing (CS) provides a new paradigm of sub-Nyquist sampling which can be considered as an alternative to Nyquist sampling theorem. In particular, providing that signals are with sparse representations in some known space (or domain), information can be perfectly preserved even with small amount of measurements captured by random projections. Besides sparsity prior of signals, the i...
متن کاملFast Sublinear Sparse Representation using Shallow Tree Matching Pursuit
Sparse approximations using highly over-complete dictionaries is a state-of-the-art tool for many imaging applications including denoising, super-resolution, compressive sensing, light-field analysis, and object recognition. Unfortunately, the applicability of such methods is severely hampered by the computational burden of sparse approximation: these algorithms are linear or super-linear in bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1410.3080 شماره
صفحات -
تاریخ انتشار 2014